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Feedback control is applied to change conditions of a noise-induced transition in a nonlinear second order
dynamic system. The mathematical model used in the analysis is a system of two-component equations
describing operation of a semiconductor–gas-discharge image converter. The control algorithm is proposed
using the speed-gradient method for a linearized model system. It is found by computer simulations that, under
conditions when the noise is effective in determining the destructive dynamics of the system without control,
the role of noise can be essentially suppressed by a proper feedback control. The control efficiency depends on
the amplitude of control signal in a nonmonotonic way, thus demonstrating a resonancelike regularity. Appli-
cation of the proposed control method can be useful in solving other problems, such as providing survival of
endangered species in ecology, improving stability of lasers, etc.
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I. INTRODUCTION

Behavior of a number of nonlinear dynamical systems is
essentially influenced by noise. A characteristic example is
the nonlinear stochastic resonance �1–4�. It is well known
that sensitivity of detection of weak signals by some systems
can be notably increased in the presence of noise �4�. In such
cases, noise plays the constructive role. In other cases, non-
linear oscillators may undergo a phase transition in the pres-
ence of noise, i.e., a qualitative change of the dynamics of a
system can be observed when the amplitude of noise reaches
some critical value �5�. A well-known example is the emer-
gence of large amplitude oscillations due to noise in a system
that is stable at the absence of noise. The oscillations arise as
the response of the system to the modulation of a system
parameter by noise. In this case, the macroscopic dynamics
of the system to a large extent is determined by noise �which
in a real system originates from microscopic processes�.
Such a phenomenon—parametric noise resonance—is, es-
sentially, a variant of nonlinear stochastic resonance.

Appearance of the parametric noise resonance is undesir-
able if it destroys the normal functioning of a dynamical
system. For instance, this can take place in converters of
optical images that are used to record high speed processes in
the infrared �IR� range of light �6,7�. The operation of the
converters is based on electronic properties of the structure
“semiconductor–gas-discharge gap.” It has been found that,
at a small current density, the intrinsic noise of the device
can initiate large amplitude oscillations in current. This can

result in spontaneous interruption of the discharge process in
the gap �6,8�. In other words, transition from the conductive
to dielectric state of the system can occur. In the dielectric
state, the device becomes insensitive to an incoming pulse of
IR light and, therefore, is not able to convert an image.

It is of practical importance to investigate whether it is
possible to provide a proper control of the considered �and
similar� systems by applying a low amplitude action that
varies in time. The purpose of the control is to suppress the
escape of the dynamic system from the area of the phase
space where the main function of the system is ensured. In
the present report, we make an attempt to implement such a
control while using the nonlinear model of the device intro-
duced in �6�. To design a feedback control algorithm, the
speed gradient method �9–11� is employed. The control is
provided by a proper temporal variation of one of the model
parameters. In the real device, it corresponds to feeding volt-
age. Dynamics of the controlled system is analyzed by solv-
ing numerically the corresponding equations.

For the parameters chosen in the present analysis, the
positive result of control is obtained at a rather small value of
the control amplitude that equals only a small fraction of the
main feeding voltage. It is revealed that the efficiency of
control depends on the amplitude of the control signal in a
nonmonotonic way, thus exemplifying a resonancelike regu-
larity. In our opinion, this indicates a relation of the obtained
results to the nonlinear stochastic resonance phenomenon,
the essence of which is a nonmonotonic response of a system
to the deterministic signal as dependent on the amplitude of
stochastic �noise� input.

II. ANALYZED MODEL

We study the following model that is supposed to describe
properly the dynamics of the device �6�:
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dE/dt = a1�Em − E� − b1NE , �1�

dN/dt =
N

�
� E

Ec
− 1� , �2�

where E is the electric field strength in the discharge gap of
the device and N is the density of free charge carriers in the
gap. The first equation describes the charging of capacity of
the discharge gap from a source of feeding voltage and its
discharging due to the presence of free carriers in the gap.
The characteristic time of the charging process is �E=1 /a1,
and b1 is a coefficient. The maximal value of E in the gap,
that can be provided by a source of constant voltage, is Em.
For its value, we have the obvious relationship Em=Um /d,
where Um is the voltage of the feeding source and d is the
length of the gap in the direction of the electric current.

The second equation describes dynamics of density of
free carriers in the gap, which is governed by processes of
their generation and decay. It is supposed that the process of
carriers generation prevails over their recombination when E
is larger than some critical electric field strength Ec. The
parameter � defines the rate of a temporal variation of the
charge carriers density when the electric field in the gap is
not equal to the critical value.

Equations �1� and �2� have been successfully used for
interpretation of main peculiarities in dynamics of the ex-
perimental devices, such as the appearance of oscillations at
low current density and the spontaneous interruption of the
discharge glow �6,8�. The latter effect can be identified as a
noise-induced transition. When such a transition does occur,
the converter cannot process an incoming image. We point
out also Eqs. �1� and �2� have been used earlier to demon-
strate an application of the optimal control method to in-
crease the high-speed performance of the converter; see �12�.

The stationary solution �E0 ,N0� of system �1� and �2� in
the absence of noise is

E0 = Ec, N0 =
a1

b1
�Em

Ec
− 1� . �3�

The linear analysis of stability of this state reveals that it is a
stable focus at values of �E large enough. When �E increases
further, the oscillatory properties of the system become more
pronounced—that is, its Q factor grows. In its turn, the value
of N0 decreases. This corresponds to lowering of electrical
current in the device, whose properties are simulated by Eqs.
�1� and �2�.

It should be stressed that generation of free carriers in the
gas-discharge gap is provided by the avalanche ionization of
gas atoms and molecules. The efficiency of this process is
known to fluctuate in time, which serves as a source of in-
trinsic noise of the experimental nonequilibrium system. In a
simple approach, the influence of the noise on dynamics of
the system can be simulated by stochastically changing pa-
rameter Ec in time in Eqs. �1� and �2� �6�. It has been found
in the cited work that such an approach can give growth of
oscillations in time and cause interruption of electric current
in the device.

An example of dynamics of the system under the action of
noise in parameter Ec is represented by Fig. 1. The data is

obtained at the following set of parameters of Eqs. �1� and
�2�: b1=5�10−3 cm3 /s; �=1.5�10−9 s; Em=8�104 V /cm;
Ec=E0=4�104 V /cm; N0=2�106 cm−3. The value of the
coefficient a1 is 2�104 s−1. The above values of numerical
parameters are in correspondence with the physical param-
eters of the real device �6–8�. The amplitude of the uni-
formly distributed stochastic noise used to obtain the curve
in Fig. 1 equals 1% of Ec.

Our next step is to elucidate whether it is possible to
suppress the tendency of the system to enter the “dangerous
domain” of the phase space, where the discharge decays, by
applying a proper control. The following section is devoted
to the elaboration of such a control algorithm.

III. DESIGN OF CONTROL ALGORITHM

Physical principles of the device under consideration sug-
gest that the role of controlling action can be played either by
the supply voltage or conductance of the semiconductor
component. The latter option can be implemented in an ex-
periment due to the photoelectrical effect in the semiconduc-
tor, by applying its optical excitation. Using such a method
corresponds to variation of the coefficient a1 in Eq. �1�.

In this study, we consider the first option where the sys-
tem is controlled by varying the supply voltage in time. It is
also assumed that both state variables E�t�, N�t� of the model
�1�, �2� are available for measurement. To construct a control
algorithm, we use the speed-gradient method �9,11� suggest-
ing to change control variables along the gradient of some
goal function Q�x� which small values correspond to
achievement of the control goal.

The first step of the procedure is to choose the goal func-
tion properly. Since the control goal is to maintain the system
trajectories near the nominal state �3�, the goal function can
be taken as a positive definite function of the deviation
X�t�−X0, where X�t�= �E�t� ,N�t��T and X0= �E0 ,N0�T. We
choose the goal function as the quadratic form Q�X�= �X
−X0�TP�X−X0�, where P is a symmetric positive definite 2
�2 matrix to be determined. In order to specify the matrix
P, we linearize the model �1�, �2� near X0:

Ẋ = A�X − X0� , �4�

where

FIG. 1. Typical realization of a process without control. For
details of calculations, see the text.
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A = �− a1 − b1N0 − b1E0

N0/��Ec� 0
� .

Evaluation of the characteristic polynomial ���� of A yields
����=det��I−A�=�2+ �−a1−b1N0��+b1E0N0 / ��Ec�. Since
all its coefficients are positive, the eigenvalues of A have
negative real parts and the matrix is stable. Hence the
Lyapunov equation PA+ATP=−I, where I is the identity ma-
trix, has a unique positive definite solution. Let this solution
be chosen as P.

Let the control variable be u=Em−Em nom. The next step is
to evaluate the derivative dQ /dt, which is the speed of vary-
ing Q along trajectories of Eqs. �1� and �2�, and then to find
the partial derivative of dQ /dt in control u. This procedure
yields

dQ/dt = �X − X0�TP	a1�Em − E� − b1NE

N

�
� E

Ec
− 1� 
 .

Taking into account that X0 depends on the control u�t�, we
obtain for the partial derivative of dQ /dt in control the ex-
pression

�Q̇

�u
= � − �u ,

where

� = a1p11�E − E0� + a1p21�N − N0� −
a1p21

b1E0
a1�Em − E�

− b1NE ,

�=2�a1
2 /b1E0�p21, while p11, p21 are the elements of the first

column of the matrix P.
Choosing the speed-gradient algorithm in the finite form

�10,11�, we arrive at the following control algorithm:

u = −
��

1 − ��
, �5�

where ��0 is a design parameter of the algorithm. For the
purpose of analysis it is convenient to modify Eq. �5� by
introducing the saturation of the control intensity and fixing
its maximal value:

u = − ū sat� ��

ū�1 − ���
� , �6�

where ū�0 is a new design parameter,

sat�z� = � z , �z� 	 1,

sgn z , �z� 
 1.

If the deviation X−X0 is small and the noise is absent, the
achievement of the control goal �the convergence X�t�
−X0�t�→0 takes place� follows immediately from the stabil-
ity of the linearized system, since Q plays the role of the
Lyapunov function of the system. For large deviations of X
−X0, the behavior of the closed control loop system �1�, �2�,
and �6� is studied by means of computer simulation.

IV. APPLICATION OF THE CONTROL ALGORITHM

The main goal of the analysis is to look into a possibility
of suppressing the noise-induced transition through the con-
trol mechanism introduced above. Given the control is suc-
cessful, our next task is to investigate quantitatively depen-
dence of the efficiency of the control on the amplitude of the
control action. The analysis has been performed in a series of
simulations in the MATLAB environment.

Our main interest is to apply control to a case where with-
out control the system is rather sensitive to noise, i.e., the
noise is able to destroy its normal functioning. This problem
is analyzed for the same fixed parameters as those used to get
data of Fig. 1. The value of parameter a1 is varied within the
range �1�103�–�2.5�104� s−1.

The first stage of the analysis is to study dynamics of the
uncontrolled system at the presence of noise, while varying
the parameter a1. Recall that this parameter can be adjusted
in experiments by photoelectrical excitation of the semicon-
ductor detector of the device �7�. Similarly to calculations
made to obtain the curve of Fig. 1, the amplitude of the
uniformly distributed stochastic noise is taken to be 1% of
Ec.

We wish to define how the value of a1 influences the time
tc of the system transition to the nonconductive �dielectric�
state, when it evolves from the initial state �3� under the
action of noise. In the calculations, this time is specified as
the time of the first crossing of the level N*=102 cm−3 by the
trajectory N�t�. Remark that this density of free carriers is
supposed to correspond to the minimal value of the discharge
current in the physical device—observing the state with car-
riers density lower than N*=102 cm−3 means finding less
than one free charge carrier in the gap �6�, which actually
corresponds to the non-conducting case. Therefore, the dis-
charge is interrupted when the state N*=102 cm−3 is reached.

Observed realizations of the events where the “discharge
interruption” takes place are shown on Fig. 2. The data are
calculated for the range of parameter a1, where dynamics of
the system manifests strong oscillations due to the noise. The
set of points indicates times of transition to the nonconduct-

FIG. 2. Time elapsed before the “discharge interruption” as de-
pendent on parameter a1. Data are obtained for different temporal
realizations of noise of the same intensity, which gives scattering of
points at a given value of the parameter a1.
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ing state. The data refer to three temporal realizations of
noise, which gives scattering of points at a given value of a1.
It can be seen that the behavior of the system is weakly
statistically reproducible. However, the tendency of tc to in-
crease can be seen as a1 grows. Based on the obtained re-
sults, the value a1=104 s−1 has been taken in further calcu-
lations. In the absence of control, the time of the system stay
in the conducting state is rather short for this value of a1.

At the next step of study, the possibility to maintain the
discharge by means of control has been investigated. Since
the system trajectories are random functions, the minimal
value of the free carriers density N*=min N�t� is chosen as a
measure of the discharge stability �reliability�. The minimum
is determined inside the time interval 0	 t	T for T signifi-
cantly exceeding the typical time tc.

Typical time histories of the system with and without con-
trol are shown in the left part of Fig. 3. The maximal ampli-
tude of the control signal ū=0.2Em is applied in the calcula-
tions. The corresponding trajectories in the space of state
variables are represented in the right side of Fig. 3. The data
unambiguously illustrates that the implemented control can
be quite efficient in improving the stability of the system.

Since the main purpose of control is to maintain a value
of N* large enough, it is of interest to investigate how this
value may depend on the amplitude of the control signal. An
example of such a calculation is shown on Fig. 4�a�. The data
shows that the noise-induced phase transition �the discharge
failure in the physical device� does not occur yet for the
control amplitude about 5% of Em. The subsequent increase
of the amplitude ū leads to an increase of the value of N*.
However, when ū reaches approximately 0.2 of Em, the
growth of N* is slowing down. The further increase of ū is
accompanied by the decrease of N*.

The sensitivity of the system behavior to the amplitude of
the controlling signal may be expressed in terms of the rela-
tive efficiency of the control process �=N* / ū. The depen-
dence of this parameter on the control amplitude is repre-
sented on Fig. 4�b�. We point out that the value of � can be
interpreted as a stochastic version of the excitability index.
This figure of merit has been introduced in �11,13� as a mea-
sure of ability of a system to absorb the energy from an
external control.

It follows from the data of Fig. 3 that the application of
control can shrink essentially the area of the phase space
occupied by the system trajectories. As a measure of statis-
tical reproducibility of the effect of control, the ratio R
=max
Nmin� /min
Nmin� can be adopted. The corresponding
characteristic calculated as a function of ū is shown in Fig. 5,
where max
Nmin� and min
Nmin� are determined over 10 re-
alizations of noise for the fixed ū. We see that the effect of
control is practically statistically reproducible for ū
1
�104.

It is assumed in the above simulations that the state of the
system is available for measurement at each instant of nu-
merical integration of Eqs. �1� and �2�, i.e., the system is
considered as being continuous in time. Since the integration
step is �t=2.5�10−9 s and the duration of one cycle of the
phase trajectory is about 2�10−6 s, it means that about 103

'

'

FIG. 3. Examples of dynamics of the system without control, plots �a� and �a��, and with control, plots �b� and �b��. The amplitude of
control signal ū=0.2Em. Pay attention to different scales on axes of plots for uncontrolled and controlled cases.

FIG. 4. �a� Dependence of minimal density of carriers and �b�
the excitation index of the system on the relative value of maximal
amplitude of control.
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measurements per a cycle of the orbit should be performed.
Yet, an implementation of so frequent measurements in a

real experiment would be a rather difficult task. Therefore, it
is interesting to determine whether one can perform a more
rare sampling of the state of the system. The results obtained
for samplings that are 20, 30, 40, and 50 times more rare as
compared to that used in the above simulations are collected
in Table I.

As follows from these data, even 50 times less frequent
measurements do not influence significantly the efficiency of
control for the system under consideration. Namely, for this
case the minimal value of N�t� decreases by 16%, while the
measure of randomness R=max
Nmin� /min
Nmin� increases
only by 15%. We point out also that the graph of the con-
trolling function for rare measurements resembles that ob-
served for frequent measurements, see Fig. 6, where ex-
amples of corresponding curves are presented.

V. CONTROL FOR INCOMPLETE MEASUREMENTS

We note that in real experiments it is difficult to measure
the two components of the system dynamical state, which are
E�t� and N�t�. Therefore, it might be of interest to establish
whether an efficient control can be implemented if only one
component of the state vector of the system is available for
measurements. From the experimental point of view, measur-
ing the variable N�t� is preferable, because this quantity is
directly related to the electric current in the system.

We study the possibility to replace the other variable E�t�
by its estimate Ê�t� obtained from available measurements.
Such estimation algorithms for nonlinear systems �so-called

partial nonlinear observers� have been actively studied re-
cently �14,15�. In this paper, we propose to evaluate the es-

timate Ê�t� according to the following equation:

dÊ/dt = a1�Em − Ê� − b1NÊ . �7�

The equation for the estimation error e�t�=E�t�–Ê�t� is
obtained by subtracting Eq. �7� from Eq. �1�:

de/dt = − a1e�t� − b1N�t�e�t� = − �a1 + b1N�t��e�t� . �8�

Though the coefficient in linear equation �8� varies in
time, the value of the error e�t� converges to zero. Indeed,
evaluating the rate of change of the squared error e�t�2 with
respect to Eq. �8�, we obtain

de�t�2/dt = 2e�t�de�t�/dt = − 2�a1 + b1N�t��e�t�2.

Since N�t�
0, the inequality

de�t�2/dt 	 − 2a1e�t�2

holds. Hence the exponential decay rate of e�t� for a1

=104 s−1 may be estimated as 104 s−1.
Numerical study has been done for the same parameters

values as in the previous section. It is found that the pro-
posed algorithm provides good control efficiency. In general,
the result of control depends on the initial value of the elec-
tric field strength E�0�—an increase in deviation of E�0�
leads to an increase of time until the control becomes effi-
cient; see Fig. 7. The following values of E�0� were used in
calculations: 0.9E0, 0.5E0, and zero. Data at a given value of

Ê�0� were calculated for three different realizations of noise,
which practically did not influence the results.

The corresponding convergence time of the method,
where the estimation algorithm is applied, is found to be

�2–3��10−4 s for Ê�0�=0 and �0.5–1.5��10−4 s for Ê�0�
=0.5E0. After this initial stage, the realizations of N�t� prac-
tically coincide with those evaluated for the case where both
state variables are measured. It is also found that for the
range of the initial electric field from 0.9E0 to 0.5E0 the
minimal value of the variable N during the transient time is

FIG. 5. Dependence of ratio R=max
Nmin� /min
Nmin� on the
maximal value of control signal.

TABLE I. Minimal density of carriers and ratio R versus resa-
mpling coefficient.

Resampling
coefficient 105 Nmin R

1:1 2.2471 1.6534

1:20 2.2004 1.7453

1:30 2.1668 1.8253

1:40 1.9828 1.8971

1:50 1.8822 1.9151

FIG. 6. Fragments of dependencies of the control signal on time
for frequent �solid line� and rare �dashed line� measurements of
variable N. The two curves are obtained for the same variation of
noise in time. For details, see the text.
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not less than 103 cm−3. That is, it is well above the critical
carriers density for the discharge interruption �102 cm−3� dis-
cussed in the previous section.

In the above examples, the set of values of initial electric
field is chosen in a rather broad range somewhat arbitrarily.
However, the obtained data unambiguously demonstrate the
capability of the method to provide the robust control even in
cases, where the initial value of electric field strongly devi-
ates from the fixed point of the system. We suppose that
estimation-based algorithms can be applied to other systems
which models are close to Eqs. �1� and �2�.

VI. CONCLUSION

In summary, in the present work a new feedback algo-
rithm is suggested to control a nonlinear two-component dy-
namical system. The physical realization of the mathematical
model is the semiconductor–gas-discharge gap image con-
verter. The control variable is added to the voltage feeding
the system. The designed control algorithm is based on the
speed-gradient method. According to the obtained results, the
control keeps the studied system in the domain of the phase
space where its tendency to make a noise-induced transition
to the nonconducting state is suppressed. It has been found
that the positive result of control can be observed at a rather
low amplitude of the control variable that can be less than
5% of the nominal voltage feeding the device.

It seems plausible that speed-gradient-based control algo-
rithms can be employed to “correct” dynamics of other sys-
tems which behavior becomes undesirable due to the influ-
ence of stochastic forces. We suppose that the algorithms can
be applied, e.g., to control ecological systems with an inten-
tion to develop a technology the providing the survival of
threatened species. Among other applications, improving of
the operation stability of lasers can be mentioned. In this
relation, it is worth noting that some models that are close to
Eqs. �1� and �2� were discussed in literature, e.g., models of
species interaction �16� or models of laser dynamics �17�.

It might be also of interest to extend the proposed ap-
proach to the problems of controlling spatially extended sys-
tems which dynamics can produce spatiotemporal structures
due to the noise-induced resonance phenomena. As an ex-
perimental system which dynamics might be simulated, the
“semiconductor–gas-discharge gap” device could be em-
ployed again. Being spatially extended, this device exempli-
fies a number of scenarios of self-organized behavior at some
sets of experimental parameters �18�. Some patterns that
arise in the device can be interpreted with a relatively simple
theoretical model �19,20� which, in essence, is an extension
of Eqs. �1� and �2�. This model seems to be promising for
examination as an object of spatially extended control.

Finally, at present the growing tendency to diminish di-
mensions of electronic devices is observed, and the so-called
“one-electron” devices are the natural physical limitation of
this development. In general, this is accompanied by the in-
creasing role of intrinsic noise in their operation. On the
other hand, active electronic devices function in far from
equilibrium nonlinear modes, where noise may critically de-
termine macroscopic behavior of a device. Therefore, sup-
pressing the role of noise in a device operation may become
crucial. In a more general setting, the control of noisy behav-
ior of small electronic systems is related to an interesting
physical problem to control microscopic systems while vary-
ing in time some macroscopic parameters.
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